<name> Class: Honors Geometry Date: <date> Topic: Lesson 9-4 (Vectors)

Vector	Quantity with direction and magnitude (distance, speed, etc)
Tail of vector	Initial/starting point of vector
Head of vector	End/terminal point of vector 1_{v}
Describe w/coords	$\langle x, y \rangle$ tail at origin, head at (x, y) Use dist formula to determine magnitude. Use tangent to determine direction angle Given direction and magnitude use cosine (x) and sine (y).
Describe w/compass directions	Compass rose: y-axis: up is North, down is South x-axis: left is West, right is East 65 mi 50° south of east. Or complement: 65 mi 40° east of south. V W E S S
Vector addition	Move tail to head. Add coords: if $\vec{u} = \langle x_1, y_1 \rangle$ and $\vec{v} = \langle x_2, y_2 \rangle$ then $\vec{u} + \vec{v} = \langle x_1 + x_2, y_1 + y_2 \rangle$
Examples	 Describe OM as an ordered pair. Give coords to nearest 10th. cos 40 = x/80; x = 80 cos 40 = 61.28 ≈ 61.3 (in the negative x dir) sin 40 = y/80; y = 80 sin 40 = 51.42 ≈ 51.4 (in the negative y dir) OM = (-61.3, -51.4) Use compass directions to describe the direction of the vector. 22° east of south. (preferable) or 68° south of east. W y 40 y y y y y y y y y y y y y y y y y

<name> Class: Honors Geometry Date: <date> Topic: Lesson 9-4 (Vectors)

3. A boat sailed 12 mi E & 9 mi S. The trip can be described by the vector $\langle 12, -9 \rangle$. Use dist & dir to describe it in a 2nd way.

Direction:

$$x = \tan^{-1}\left(\frac{9}{12}\right) = 36.87 \approx 37^{\circ}$$

Now the distance sailed: use the Pythagorean Theorem.

 $\sqrt{9^2 + 12^2} = 15$ The boat sailed 15 miles at about 37° south of east.

4. Vectors $\overline{v}\langle 4,3\rangle$ and $\overline{w}\langle 4,-3\rangle$ are shown. Write \overline{s} , their sum, as an ordered pair.

 $\vec{s} = \vec{v} + \vec{w} = \langle 4 + 4, 3 + -3 \rangle = \langle 8, 0 \rangle$

5. An airplane's speed is 250 *mph* in still air. The wind is blowing due east at 20 *mph*. If the airplane heads due north, what is its resultant speed and bearing (direction)? Round to the nearest unit. Diagram is not to scale.

The airplane's vector is $\langle 0, 250 \rangle$ The wind's vector is $\langle 20, 0 \rangle$ The resultant vector is $\langle 20, 250 \rangle$ The resultant's speed (magnitude) is: $\sqrt{20^2 + 250^2} = 250.799 \approx 251 mi$ The resultant's bearing is: $x^\circ = \tan^{-1} \left(\frac{20}{250} \right) = 4.57 \approx 5^\circ$

251 *mi* at about 5° east of north